If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x^2+30x=0
a = 13; b = 30; c = 0;
Δ = b2-4ac
Δ = 302-4·13·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-30}{2*13}=\frac{-60}{26} =-2+4/13 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+30}{2*13}=\frac{0}{26} =0 $
| -8(6-5k)-8k=-240 | | 8-2×m=2 | | -18+x=3(4x-6)+3x | | -(3x+x)+7-5x=8+(-5)(5x-6x)+23 | | -8a+6a-14a=16a | | 2(3x+4)+41=10x+3-4x+46 | | 3h/5-20=73/10 | | 36*n=9*36 | | 8-2×m=3 | | 5^x/14=0.8 | | -4w-43=5(w+4) | | -4(w+1)=8 | | 15=17+a(0.014) | | 0=5+34t-16t^2 | | 2(a-8)+7=5(a+7)-3a-19 | | 5/1+c=5/4 | | 56÷n=7;n= | | 8(3p-2)-6p=-124 | | -6(x-1)=42 | | (-4x)+6=2x-12 | | 5/1+c=5/4 | | 5^x/4=0.8 | | 3q-7=24 | | 14b=16b+28 | | 7p-21p+28p=-4p-2+10 | | 7=2m-1 | | 8y-6y-4=26.62 | | -2s+3+2s=3 | | 2(x-1)-6=10-10x+6 | | 9(y+1)+6=2(9y+3) | | -3r+12=6 | | -5y+6y-7y=48 |